

Ultra High-Fidelity PCR Master Mix Cat. no. TTC-PE15 Storage: Store at -20 °C Product Size: 1 mL

# Introduction

TOOLS Ultra High-Fidelity PCR Master Mix is a new generation of superior enzyme based on Ultra High-Fidelity DNA Polymerase for robust polymerase chain reaction (PCR) with higher fidelity. The unique extension factor, specificity-promoting factors, and plateau-inhibiting factor that have been added to 2× Ultra High-Fidelity PCR Master Mix greatly improve its long-fragment amplification ability, specificity, and PCR yield. The 2× Ultra High-Fidelity PCR Master Mix is capable of amplifying long fragments such as 40-kb  $\lambda$  DNA, 40-kb plasmid DNA, 20-kb genomic DNA, and 10-kb cDNA. The amplification error rate of the 2× Ultra High-Fidelity Super-Fidelity DNA Polymerase is 53-fold lower than that of conventional Taq and sixfold lower than that of nfu. In addition, the 2× Ultra High-Fidelity Super-Fidelity DNA Polymerase has a good resistance to PCR inhibitors and can be used for direct PCR amplifications of bacteria, fungi, plant tissues, animal tissues, and even whole blood samples. The 2× Ultra High-Fidelity DNA Polymerase contains two monoclonal antibodies that inhibit the  $5' \rightarrow 3'$ polymerase activity and  $3' \rightarrow 5'$  exonuclease activity at room temperature, enabling the 2× Ultra High-Fidelity DNA Polymerase to perform highly specific Hot-Start PCRs. The 2× Ultra High-Fidelity PCR MasterMix contains 2× Ultra High-Fidelity Super-Fidelity DNA Polymerase, dNTP, and an optimized buffer system. The amplification can begin only with the addition of a primer and template, thereby easing PCR setup and improving reproducibility. Protective agents in this product are capable of repeated freeze-thaw cycles.

# Protocol

#### Unit definition

One unit (U) is defined as the amount of enzymes that incorporate 10 nmol of dNTPs into acid-insoluble products in 30 min at 74°C with activated salmon sperm DNA as the template or primer.

#### Primer Design

- 1. Choose C or G as the last base of the 3'-end of the primer;
- 2. Avoid continuous mismatching at the last eight bases of the 3'-end of the primer;
- 3. Avoid a hairpin structure at the 3'-end of the primer;
- 4. The temperature of the primers should be within the range of  $55^{\circ}C-65^{\circ}C$ ;
- 5. Additional sequences should not be included when calculating the temperature of the primers;
- 6. GC content of the primers should be within the range of 40%–60%;
- 7. The temperature and GC content of forward and reverse primers should be as similar as possible.

#### Recommended PCR Reaction

Optimal reaction concentration varies in different templates. In a 50-µL system, the recommended

template usage is as follows:

| Template                                    | Volume                                                                                                                                                                      | Final concentration |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Genomic DNA<br>Plasmid or Virus DNA<br>cDNA | $\begin{array}{c} X \ \mu L \ (50-400 \ ng) \\ Y \ \mu L \ (10 \ pg \sim 30 \ ng) \\ 1-5 \ \mu L \ (\leq 1/10 \ of \ the \ total \ volume \ of \ PCR \ system) \end{array}$ | -                   |
| Primer 1(10 µM)                             | 2 μL                                                                                                                                                                        | 0.4 μΜ              |
| Primer 2(10 µM)                             | 2 µL                                                                                                                                                                        | 0.4 µM              |
| 2x Master Mix                               | 25 μL                                                                                                                                                                       | -                   |
| ddH <sub>2</sub> O                          | Up to 50 µL                                                                                                                                                                 | -                   |

#### PCR Cycle Setup

| Temperature          | Time         | Cycles       |
|----------------------|--------------|--------------|
| 95°Cª                | 30 sec/3 min | -            |
| 95°C                 | 15 sec       |              |
| 56-72°C <sup>b</sup> | 15 sec       | 25-35 cycles |
| 72°C°                | 30-60 sec/kb |              |
| 72°C                 | 5 min        | -            |

- 1. For predenaturation, the recommended temperature is 95°C, and the recommended time is 30 s for plasmid or virus DNA and 3 min for genomic DNA or cDNA.
- 2. For annealing, the recommended temperature is the temperature of the primers. If the temperature of the primers is higher than 72°C, the annealing step can be removed (two-step PCR). If necessary, the annealing temperature can be further optimized as a gradient. In addition, the amplification specificity depends directly on the annealing temperature. Raising the annealing temperature in 3°C-increments is helpful for improving poor amplification specificity.
- 3. Longer extension time is helpful for increasing the amplification yield.

#### For Long-Fragment PCR

Use high-quality templates and improve the template usage. Use long primers. When the recommended PCR program does not work, try the touchdown two-step PCR as follows:

| Temperature       | Time      | Cycles |
|-------------------|-----------|--------|
| 95°Cª             | 3 min     | -      |
| 95°C              | 15 sec    | 5      |
| 74°C <sup>b</sup> | 60 sec/kb | 5      |
| 95°C°             | 15 sec    | 5      |
| 72°C              | 60 sec/kb |        |
| 95°Cª             | 15 sec    | 5      |
| 70°C              | 60 sec/kb |        |
| 95°C <sup>b</sup> | 15 sec    | 25     |
| 68°C°             | 60 sec/kb |        |
| 68°C              | 5 min     | -      |

#### For PCR Using Crude Material as the Template

TOOLS 2× Ultra High-Fidelity PCR Master Mix has a good resistance to PCR inhibitors and can be used for direct PCR amplification of bacteria, fungi, plant tissues, animal tissues, and whole blood samples. Crude materials that have been successfully amplified with Phanta Max Master Mix are as follows:

| Sample Type               | Amplification Method | Template Recommendation(for a 50 µL PCR system) |
|---------------------------|----------------------|-------------------------------------------------|
| Whole Blood               | Direct PCR           | 1 - 5 μL                                        |
| Filter Paper Dry<br>Blood | Direct PCR           | 1 - 2 mm 2 filter paper                         |
| Cultured Cells            | Direct PCR           | Little amounts of cells                         |

| Yeast        | Direct PCR      | A monoclone or 1 µL suspension      |
|--------------|-----------------|-------------------------------------|
| Bacteria     | Direct PCR      | A monoclone or 1 $\mu$ L suspension |
| Mold         | Direct PCR      | Little amount of sample             |
| Sperm        | Direct PCR      | Little amount of sample             |
| Plankton     | Direct PCR      | Little amount of sample             |
| Plant Tissue | Direct PCR      | 1 - 2 mm 2 tissue                   |
| Mouse Tail   | PCR with lysate | 1 - 5 μL lysate*                    |
| Food         | PCR with lysate | 1 - 5 μL lysate*                    |

\* Lysate Preparation: Submerge a small amount of the sample in a lysis buffer with a final concentration of 200  $\mu$ g/mL of Proteinase K (self-provided). Heat the mixture to 60°C for 10 min and then 95°C 10 min. Mix well and spin at room temperature. Collect the supernatant as a lysate (Lysis buffer: 20 mM Tris-HCl, 100 mM EDTA, 0.1% SDS, pH 8.0).

#### **Application Examples**

- A. Suitable for Amplification of Fragments with Various Samples
- Taking human genomic DNA as the template, the target fragments of 0.6 kb, 1.0 kb, 2.6 kb, 3.0 kb,
   4.0 kb, 5.1 kb, 6.2 kb, 7.1 kb, 8.5 kb, 10.6 kb, 17.8 kb, 20.3 kb, and 21.4 kb were amplified. The temperature of all the primers was approximately 60°C (calculated using Primer Premier 5).

| Template                      | Volume      | Final concentration |
|-------------------------------|-------------|---------------------|
| Human Genomic DNA (100 ng/µL) | 1 μL        | -                   |
| Primer 1(10 µM)               | 2 μL        | 0.4 μΜ              |
| Primer 2(10 µM)               | 2 μL        | 0.4 μΜ              |
| 2x Master Mix                 | 25 μL       | -                   |
| ddH <sub>2</sub> O            | Up to 50 µL | -                   |

#### Recommended PCR Program

| Temperature       | Time      | Cycles    |
|-------------------|-----------|-----------|
| 95°Cª             | 3 min     | -         |
| 95°C              | 15 sec    |           |
| 60°C <sup>b</sup> | 15 sec    | 35 cycles |
| 72°C°             | 30 sec/kb |           |
| 72°C              | 5 min     | -         |

Taking human whole blood as the template, a target fragment of 1,295 bp was amplified with TOOLS
 2× Ultra High-Fidelity PCR Master Mix. The temperature of all the primers was approximately 60°C (calculated using Primer Premier 5).

The reaction system and program are as follows:

| Template           | Volume      | Final concentration |
|--------------------|-------------|---------------------|
| Whole blood        | 1 - 4 µL    | -                   |
| Primer 1(10 µM)    | 2 μL        | 0.4 µM              |
| Primer 2(10 µM)    | 2 μL        | 0.4 µM              |
| 2x Master Mix      | 25 μL       | -                   |
| ddH <sub>2</sub> O | Up to 50 µL | -                   |

Recommended PCR Program

| Temperature             | Time      | Cycles    |
|-------------------------|-----------|-----------|
| 95°Cª                   | 3 min     | -         |
| 95°C                    | 15 sec    |           |
| 60/63/70°C <sup>b</sup> | 15 sec    | 35 cycles |
| 72°C°                   | 30 sec/kb |           |
| 72°C                    | 5 min     | -         |

The annealing temperatures for 1.3 kb, 3.6 kb, and 8.5 kb of the target fragments are 60°C, 63°C, and 70°C, respectively.

3. Taking a tomato leaf, a rice leaf, and polished rice as templates and the purified genomic DNA from the rice leaf as a positive control, target fragments of 1.3 kb were amplified with TOOLS 2× Ultra High-Fidelity PCR Master Mix. The temperature of all the primers was approximately 60°C (calculated using Primer Premier 5).

| Template           | Volume      | Final concentration |
|--------------------|-------------|---------------------|
| Plant tissues *    | X μL        | -                   |
| Primer 1(10 µM)    | 2 μL        | 0.4 µM              |
| Primer 2(10 µM)    | 2 µL        | 0.4 µM              |
| 2x Master Mix      | 25 μL       | -                   |
| ddH <sub>2</sub> O | Up to 50 µL | -                   |

The reaction system and program are as follows:

\*The recommended diameter of the plant tissues is 0.3-3 mm.

#### Recommended PCR Program

| Temperature       | Time      | Cycles    |
|-------------------|-----------|-----------|
| 95°Cª             | 3 min     | -         |
| 95°C              | 15 sec    |           |
| 60°C <sup>b</sup> | 15 sec    | 35 cycles |
| 72°C°             | 30 sec/kb |           |
| 72°C              | 5 min     | -         |

4. Using the lysate of mouse tails as the template, a target fragment of 2.5 kb was amplified with TOOLS
2× Ultra High-Fidelity PCR Master Mix. The temperature of all the primers was approximately 60°C (calculated using Primer Premier 5). The reaction system and program are as follows:

| Template              | Volume      | Final concentration |
|-----------------------|-------------|---------------------|
| Lysate of Mouse Tails | 2 μL        | -                   |
| Primer 1(10 µM)       | 2 μL        | 0.4 µM              |
| Primer 2(10 µM)       | 2 μL        | 0.4 µM              |
| 2x Master Mix         | 25 μL       | -                   |
| ddH <sub>2</sub> O    | Up to 50 µL | -                   |

Recommended PCR Program

| Temperature       | Time      | Cycles    |
|-------------------|-----------|-----------|
| 95°Cª             | 3 min     | -         |
| 95°C              | 15 sec    |           |
| 60°C <sup>b</sup> | 15 sec    | 35 cycles |
| 72°C°             | 30 sec/kb |           |
| 72°C              | 7 min     | -         |

- B. Amplification of Fragments with High GC Content
- Taking human genomic DNA as the template, the GC content of the amplicons was higher than 68%. The temperature of all the primers was approximately 60°C (calculated using Primer Premier 5).

The PCR reaction system and the PCR program are as follows:

| Template              | Volume      | Final concentration |
|-----------------------|-------------|---------------------|
| Lysate of Mouse Tails | 2 μL        | -                   |
| Primer 1(10 µM)       | 2 μL        | 0.4 µM              |
| Primer 2(10 µM)       | 2 μL        | 0.4 µM              |
| 2x Master Mix         | 25 μL       | -                   |
| ddH <sub>2</sub> O    | Up to 50 µL | -                   |

Recommended PCR Program

| Temperature | Time      | Cycles      |
|-------------|-----------|-------------|
| 95°Cª       | 3 min     | -           |
| 95°C        | 15 sec    | - 35 cycles |
| 72°C°       | 45 sec/kb |             |
| 72°C        | 5 min     | -           |

# Troubleshooting

#### No or Low Yield of PCR Products

| Primers                  | Optimize primer design                                                   |
|--------------------------|--------------------------------------------------------------------------|
| Annealing Temperature    | Set gradient annealing temperature to determine the optimal temperature  |
| Concentration of Primers | Appropriately improve the concentration of primers                       |
| Extension Time           | Appropriately increase the extension time from 30 s/kb to 1 min/kb       |
| Cycle Numbers            | Increase number of cycles to 35–40                                       |
| Purity of Templates      | Use high-purity templates                                                |
| Template Input           | Refer to the recommended reaction system and increase the input properly |

#### Unspecific or Smear Bands in Electrophoresis

| Primers                  | Optimize primer design                                                                            |  |
|--------------------------|---------------------------------------------------------------------------------------------------|--|
| Annealing Temperature    | Try to improve annealing temperature and set gradient annealing temperature                       |  |
| Concentration of Primers | Decrease the concentration of primers to a final concentration of 0.2 $\mu M$                     |  |
| Extension Time           | Appropriately decrease the extension time when blend bands longer than<br>the target bands appear |  |
| Cycle Numbers            | Decrease number of cycles to 25–30                                                                |  |
| PCR Programs             | Use two-step PCR or touchdown PCR                                                                 |  |
| Purity of Templates      | Use high-purity templates                                                                         |  |
| Template Input           | Modify or decrease template inputs referring to the recommended reaction system                   |  |

This product is for research only, not for diagnostic or clinical use.

BIOTOOLS CO., LTD www.tools-biotech.com +886-2-2697-2697 info@tools-biotech.com