

TOOLSpeed Quant SYBR Green Master mix

Cat. no.: ST-QS01

Storage:

Please store the reagent at -20 °C for long term storage and 4°C for a short period (~2 weeks). Store in the dark and avoid direct exposure to strong light. e avoided.

Product Size:

Contents	ST-QS01 (100 rxn/20 μL)	
TOOLSpeed Quant SYBR Green master mix	1 mL	

Introduction

TOOLSpeed Quant SYBR Green master mix is an optimized 2X SYBR Green qPCR reagent that premixed low ROX reference dye. This 2X SYBR Green master mix is a high fluorescent and powerful reagent for real-time PCR in detecting nucleic acid samples by fluorescence signal accumulation. All the required components of qPCR were contained except specific primers and template. TOOLSpeed Quant SYBR Green master mix suited for qPCR instruments that required Low ROX mode, including ABI QuantaStudio series and the earlier version of ABI qPCR instruments.

Important Notes

- 1. TOOLSpeed Quant SYBR Green master mix includes SYBR Green I. Please store the reagent in the dark and avoid direct exposure to strong light during the preparation of PCR reaction mixtures.
- 2. Gently mix the reagents by inverting the tubes and spin down prior to use. Do not vortex to prevent bubbles from forming. After usage, place the reagent back to -20 °C for long time storage or 4 °C for short period usage.
- 3. TOOLSpeed Quant SYBR Green master mix premixed with low ROX dye, and it suits for qPCR instruments that required Low ROX mode.
- 4. Typically, the best amplification results can be obtained using a primer of 0.2 μM concentration. However, for the individual determination of optimal primer concentration, a primer titration from 0.2 μM to 0.5 μM can be performed.
- 5. For a reaction volume of 20 μ L, the suggested amounts of genome DNA or cDNA template between 10 pg to 50 ng. And a no template control group is suggested.
- 6. To ensure the confidence of experiment, at least 2 repeats of each sample is suggested.

Protocol

A. Set up the real-time reaction system

Note: The $2 \times$ SYBR PreMix and $50 \times$ ROX Dye should be stored and protected from light.

- Thaw the TOOLSpeed Quant SYBR Green master mix (if stored at -20°C), primers, gDNA/cDNA template, and RNase-free ddH2O. Completely mix and equilibrate the reagents to room temperature before use.
- 2. Prepare a reaction solution according to the following table. All steps should be executed on ice.

Component	20 μL volume	10 μL volume*	Final concentration
TOOLSpeed Quant SYBR Green master mix	10 μL	5 μL	1 X
Forward Primer (10 μM)	0.4 μL	0.2 μL	0.2 μΜ
Reverse Primer (10 μM)	0.4μL	0.2 μL	0.2μΜ
template	ΧμL	XμL	-
RNase-free ddH ₂ O	Up to 20μL	Up to 10μL	-

^{*} Setup of 10 µL volume suited for 384 well plate

B. Real-time PCR amplification

Two program were provided as following table. Normally, quantitative real-time PCR with optimal program yields the best results. However, if PCR results that were amplified with QuantStudio instrument does not yield favorable results, QuantStudio default program is recommended.

Optimal Program

Optimal program		
Stage	Temperature	Time
Denaturation	95 °C	3 min
Cycles	95 °C	5 sec
	60 °C	30 sec
Melting Curve	default	

40 cycles

QuantStudio default program

QuantSt	udio default progra	ım	
Stage	Temperature	Time	
UDG activation	50 °C	2 min	
Denaturation	95 °C	2 min	
Cycles	95 °C	1 sec	101
	60 °C	30 sec	40 cycles
Melting Curve	default	;	

- 3. Close the tubes and gently mix the samples. Quick spin-down can be performed to collect residual liquid from the walls of the tubes.
- 4. Place the PCR tubes in the thermal cycler and then start the PCR cycle.

Troubleshooting Guide

No amplification curve and no signals after reaction	
Comments	Suggestions
Inhibitors in template	Reduce the template amount. If necessary, perform
	the purification procedure again.
Pipetting error or missing	Check the concentrations and storage conditions of
reagent	the reagents, including primers and template nucleic
	acids. Repeat the PCR.
PCR programs or primer	Use optimal primer concentrations and check for
concentration not optimal	possible primer degradation. Modify the PCR thermal
	cycling according to the information provided in this
	handbook. If necessary, redesign the primers.
Problems with the starting	Check the concentration, storage conditions, and
template	quality of the starting template. If necessary, make
	new serial dilutions of template nucleic acids from the
	stock solutions. Repeat the PCR using the new
	dilutions.

High fluorescence in the "No Template" control	
Comments	Suggestions
Contamination of reagents	Discard reaction components and repeat the PCR with
	new reagents.
Contamination during	Take appropriate safety precautions (e.g., use filter
reaction setup	tips).
Primer degradation	Check for possible degradation of primers on a
	denaturing polyacrylamide gel.

Primer-dimers and/or nonspecific PCR products		
Comments	Suggestions	
Annealing temperature	Increase the annealing temperature in 2°C	
too low	increments.	
Primer design not optimal	Review the primer design.	
PCR product too long	For optimal results, PCR products should be between	
	70 and 300 bp.	
Primers degraded	Check for possible degradation of primers on a	
	denaturing polyacrylamide gel.	
Metering inaccuracies	An overly small reaction volume may reduce	
	detection accuracy. Use the manual-recommended	
	volume and repeat the PCR.	

No linearity in ratio of the CT value, or crossing point, to the logarithm of the	
template amount	
Comments	Suggestions
Instrument malfunction	Operate the real-time PCR instrument according to
	the manual's instructions.
Contamination of	Contamination of templates may lead to poor
templates	linearity.
Long stored dilutions of	Make new serial dilutions of template nucleic acids
template	from the stock solutions. Repeat the PCR using the
	new dilutions.
PCR programs or primer	Use optimal primer concentrations and check for
concentration not optimal	possible primers degradation. Modify the PCR

	thermal cycling according to the information	
	provided in this handbook. If necessary, redesign the	
	primers.	
Metering inaccuracies	An overly small reaction volume can reduce detection	
	accuracy. Use the manual-recommended volume and	
	repeat the PCR.	

BIOTOOLS CO., LTD www.tools-biotech.com +886-2-2697-2697 info@tools-biotech.com