

HE Swift Cloning Kit

For high-efficiency cloning of either the blunt or sticky end of PCR products

Contents

Introduction	3
Kit Contents	3
Protocol	4
<i>pHE</i> Vector Map	8

Introduction

The TOOLS HE Swift Cloning Kit is an advanced positive selection system for the highest efficiency cloning of PCR products generated with *Pfu* DNA polymerase, *Taq* DNA polymerase, or other thermostable DNA polymerases. Additionally, any other DNA fragment, either blunt-end or sticky-end, can be successfully cloned using the kit. Cloning is fast and efficient (within 5 min) and yields more than 99% positive clones.

The kit features the novel positive selection cloning vector pHE. This vector contains a lethal gene that is disrupted by the ligation of a DNA insert at the cloning site. As a result, only cells with recombinant plasmids are able to propagate, eliminating the need for expensive blue/white screening.

The vector contains an expanded multiple cloning site, as well as a T7 promoter for in vitro transcription. Sequencing primers are included for the convenient sequencing of the insert.

Features

- 1. Quick and efficient: Blue/white screening is not necessary, and the entire ligation process can be finished within 5 min.
- Sensitive and widely applied: Good for the ligation of both low-concentration fragments and long fragments and works for both blunt-end and sticky-end products.

Kit Contents

Contents	VTT-BB05
pHE Vector (35 ng/µl)	20 µL
T4 DNA Ligase (3 U/µl)	20 µL
2× Reaction Buffer	100 µL
DNA Blunting Enzyme	10 µL
Forward Sequencing Primer (10 µM)	200 µL
Reverse Sequencing Primer (10 µM)	200 µL
Control Insert DNA (700 bp, 50 ng/µl)	10 µL
ddH ₂ O	1 mL

Storage

All components of the Kit should be stored at -20°C. Repeated freeze-thaw cycles should be avoided.

Recommended DNA insert volume

- 1. The insert:vector molar ratios should be controlled to 1:3–1:10. For inserts shorter than 1 kb, a 1:3 molar ratio is recommended; for inserts longer than 1 kb, a 1:7 molar ratio is recommended.
- 2. Calculate the insert:vector molar ratio according to electrophoresis or UV spectrometer analysis result. The insert volume can be roughly calculated by the following:

Insert (ng) = $(3-10) \times \text{vector (ng)}$

insert length

For a 35-ng vector, the vector length optimal volume of a PCR product (insert) is

recommended as below:

PCR product length	Optimal volume
700 bp	25 ng
2000 bp	165 ng

Protocol

A. Blunt-End Cloning Protocol

Note:

- Suitable for cloning blunt-end PCR products generated by proofreading DNA polymerases, such as *Pfu* DNA polymerase.
- If the end structure of the PCR products is not specified by the supplier of the DNA polymerase, follow the sticky-end cloning protocol.
- This protocol can also be used to clone blunt-end DNA fragments generated by restriction digestion. For this process, gel-purify the DNA fragments prior to ligation and use the molar ratio of the *p*HE vector/insert as recommended on page 1.

All procedures must be performed in an aseptic environment.

1. Set up the ligation reaction:

Component	Volume
PCR product	X μl
2× Reaction Buffer	5 μl
<i>p</i> HE vector (35 ng/ μ l)	1 μl
T4 DNA Ligase (3 U/µl)	1 μl
ddH ₂ O	Up to 10 µl

Flick the tube to mix and centrifuge for 3–5 s.

2. Incubate the ligation mixture at room temperature (22°C) for 5 min and then put the tube on ice to

proceed with the transformation.

Note: Incubation time can be extended up to 30 min if the insert fragments are larger than 3 kb.

3. Use the ligation mixture directly for bacterial transformation (see page 6).

B. Sticky-End Cloning Protocol

Note:

- Use to clone PCR products with 3'-dA overhangs generated by Taq DNA polymerase or enzyme mixtures containing Taq DNA polymerase.
- If the end structure of the PCR products is not specified by the supplier of the DNA polymerase, follow the sticky-end cloning protocol.
- This protocol can also be used to clone DNA fragments with 5'- or 3'-overhangs generated by restriction digestion. For this process, gel-purify the DNA fragments prior to ligation and use the molar ratio of the pHE vector/insert as recommended on page 1.
- The DNA blunting enzyme is a proprietary thermostable DNA polymerase with proofreading activity. It will remove 3'-overhangs and fill-in 5'-overhangs. Nucleotides for the blunting reaction are supplied in the reaction buffer.

All procedures must be performed in an aseptic environment.

1. Set up the ligation reaction:

Component	Volume
PCR product	Χ μL
2× Reaction Buffer	5 μL
DNA Blunting Enzyme	0.5 μL
ddH ₂ O	Up to 8 µL

Flick the tube to mix and centrifuge for 3-5 s.

- 2. Incubate the mixture at 70°C for 5 min. Chill briefly on ice.
- 3. Set up the ligation reaction. Add the following to the blunting reaction mixture:

Component	Volume
pHE vector (35 ng/µl)	1 μL
T4 DNA Ligase (3 u/µl)	1 µL

Flick the tube to mix and centrifuge for 3–5 s.

4. Incubate the ligation mixture at room temperature (22°C) for 5 min.

Note: Incubation time can be extended up to 30 min if the insert fragments are larger than 3 kb.

5. Use the ligation mixture directly for bacterial transformation (see page 6).

C. Control Experiment

Follow the sticky-end protocol

1. Set up the ligation reaction:

Component	Volume
2× Reaction Buffer	5 µl
Control PCR product (700 bp, 50 ng/ µl)	0.5 µl
DNA Blunting Enzyme	0.5 µl
ddH ₂ O	Up to 8 µl

Flick the tube to mix and centrifuge for 3-5 s.

- 2. Incubate the mixture at 70°C for 5 min. Chill briefly on ice.
- 3. Set up the ligation reaction. Add the following to the blunting reaction mixture:

Component	Volume
pHE vector $(35 \text{ ng/}\mu\text{l})$	1 μl
T4 DNA Ligase (3 u/µl)	1 µl

Flick the tube to mix and centrifuge for 3–5 s.

- 4. Incubate the ligation mixture at room temperature (22°C) for 5 min.
- 5. Use the ligation mixture directly for bacterial transformation (see page 6).

D. Transformation of competent E. coli cells

- Prepare LB-ampicillin agar plates with finial ampicillin concentration of 100 μg/mL. Prewarm the plates at 37°C for at least 20 min.
- 2. Transformation
- a. Take tube(s) of TOP10 competent cells from storage and place them in an ice bath until they are just thawed. Carefully add part of the ligation reaction mixture to 50–100 µl TOP10 competent cells. The added volume of the ligation reaction mixture should be less than one-tenth of the competent cell volume. Gently flick the tubes to mix and place them on ice for 30 min. (If necessary, use control plasmid pUC19 to transform competent cells to detect transformation efficiency. Add 0.1 ng of pUC19 to another tube with a proper amount of competent cells, and then follow the next steps and continue the step of transformation of the ligation product during the same period.)
- Heat-shock the cells for 90 s in a water bath at exactly 42°C (do not shake). Immediately return the tubes to ice for 2–3 min (do not shake).
- c. Add 250–500 μl room temperature SOC or LB culture medium per tube (not containing an antibiotic), and then incubate for 45 min at 37°C with shaking (approximately 150 rpm).
- d. Mix bacteria in the tube completely. Then, plate 100 µl of the transformation cultures onto each

LB agar plate containing an antibiotic to ensure good separation of colonies for subsequent single-colony isolation. Smear bacteria completely with an aseptic elbow glass stick. After the surface of the plate is dry, leave the plate to rest at 37°C for 12–16 h.

- 3. Detection
- a. General detection: pipet the transformation mixture into a 1–5 mL liquid LB culture medium (containing 50–100 μg/mL ampicillin) and culture at 37°C overnight with shaking. Save the bacterial strain and extract plasmids. To detect whether the fragment has been correctly inserted, use PCR or enzyme cutting.

Step	Temperature	Time	Cycles		
Initial Denaturation	94°C	3 min	1 cycle		
Denaturation	94°C	30 sec			
Annealing	55°C	30 sec	30 cycles		
Extension	72°C	1 min			
Final Extension	72°C	5 min	1 cycle		
Soak	4°C	hold	1 cycle		

b. For PCR detection of the control insert DNA, the follow program can be used:

c. Quick detection: detecting whether the fragment has been correctly inserted using bacterium PCR directly.

d. Sequencing: sequencing the fragment after a general or quick detection.

Forward Sequencing Primer, 23-mer	5'-CGACTCACTATAGGGAGAGCGGC-3'
Reverse Sequencing Primer, 24-mer	5'-AAGAACATCGATTTTCCATGGCAG-3'

This product is for research only, not for diagnostic or clinical use.

pHE Vector Map

pHE Vector Cloning Sites

					forwa	ard seq	uencing	prime	er, 23-m	ner								
						T7 tra	nscriptio	n etart	1	E	co521							
		T7 p	romoter			17 114	noonpuo			Noti			B	gill		Kpn2I		
5'	GGC	GTA	ATA	CGA	CTC	ACT	ATA	GGG	AGA	GCG	GCC	GCC	AGA	TCT	TC	C GGA	TG	
3'	CCG	CAT	TAT	GCT	GAG	TGA	TAT	ccc	TCT	CGC	CGG	CGG	TCT	AGA	A AG	G CCT	AC	
	Ala	Tyr	Tyr	Ser	Glu	Ser	Tyr	Pro	Ser	Arg	Gly	Gly	Ser	Arg	GI	y Ser	Pro	
	_																	
		co881 Khol																
		spXI	_										-	Xbal		BgIII		
G		-	GI	TT	TTC	AG	CAR	AG 2	AT	blunt-e	nd A	TCT	TTC	TAC	AA G	G ATC	TCC	
С	GAG	CT	CA	AA	AAG	TCO	G TI	C 1	TA P	CR pro	luct T	AGA	AAG	ATC	C TT	C TAG	AGG	
	Glu	Le	u l	.ys	Glu	Ala	Le	u				Arg	Glu	Leu	Leu	Asp	Gly	
									Btgl									
								-	co130			-						
									Ncol			Bsu15						
	TAC	AA	TA	TT	CTC	AG	C TO	SC (CAT	GGA	AAA	TCG	ATG	TTC	TTC 1	r 3'		
	ATG	TT	AI	'AA	GAG	TCO	G AC	CG	GTA	CCT	TTT	AGC	TAc	AAG	AAG A	A 5'		
	Val	10	e /	Asn	Glu	Ala	A	a	Met	Ser	Phe	Arg	His	Glu	Glu			
						•					revers	se sequer	ncina prin	ner. 24-	mer			

BIOTOOLS CO., LTD www.tools-biotech.com +886-2-2697-2697 info@tools-biotech.com